
Formal Veri�cation

of Work�ow Patterns with SPIN

Cátia Vaz Carla Ferreira

Abstract

In this paper it is proposed the use of model-checking software technol-

ogy for the veri�cation of the business processes, namely the SPIN model

checker. Since the business processes can be decomposed into patterns,

it is proposed a translation of a well known collection of work�ow pat-

terns into Promela, the input speci�cation language of SPIN. The use of

this translation is illustrated with two business process scenarios, which

demonstrates how their translation to Promela models can be useful in

business process speci�cation and veri�cation.

Keywords: Work�ow Patterns, Formal Veri�cation, Business Analysis, SPIN,
BPMN.

1 Introduction

The aim of establishing work�ow patterns is to identify generic and recurring
constructs of work�ow systems. A pattern based approach allows to express
the work�ow systems core characteristics in a way that is su�ciently generic
for its application to a wide variety of technology o�erings. So, using work�ow
patterns o�ers a language-independent and technology-independent means of
expressing the core characteristics of a business process. In [1] is presented a
speci�cation of the work�ow patterns from the control �ow perspective. Namely,
it describes activities and their execution ordering through di�erent constructs,
which allow �ow of execution control such as sequence, choice, parallelism and
synchronization.

Since work�ow patterns are widely used in business process modeling, which
is a domain that requires a certain degree of con�dence, it is necessary to obtain a
formal semantics for each work�ow pattern. The application of formal methods
to work�ow patterns will allow formal veri�cation of work�ow systems. The
formal veri�cation can assure if the work�ow system has or has not certain
properties. Most of commercial work�ow products does not have support for
veri�cation of work�ow models which may lead to models with errors and to
undesirable executions of some or all instances of a work�ow model. Some formal
methods provide semantic analysis tools such as SPIN model checker [2]. With
this tool, systems to be veri�ed are described in Promela and the properties
to be veri�ed are expressed as Linear Temporal Logic (LTL) formulas.

In this paper it is proposed the use of software model-checking technology for
the veri�cation of the business processes, namely the SPIN model checker [2].
Since the business processes can be decomposed into patterns, it is proposed a

1

2 SPIN 2

translation of work�ow patterns into Promela, the input speci�cation language
of SPIN. Namely, we have translated each work�ow pattern belonging to the
original set of twenty patterns, considering their reviewed de�nition, described in
[1]. The use of this translation is illustrated with two business process scenarios,
which demonstrates how their translation to Promela models can be useful in
business process speci�cation and veri�cation.

This paper is structured as follows. A brief introduction to the SPIN model
checker is given in Section 2. Section 3 contains the de�nitions of work�ow
patterns and their translation to Promela. Two case studies are given in
section 4 as well as the veri�cation of some properties. Section 5 discusses
related work. Finally, in section 6 conclusions of this work are provided.

2 SPIN

The SPIN model checker is a tool to verify software systems developed by G.
J. Holzmann [2]. SPIN provides a speci�cation language, Promela, that de-
scribes the target system to be a collection of Promela processes with channel
communications. The language allows for the dynamic creation of processes
and both synchronous (rendezvous) and asynchronous communication through
communication channels.

A SPIN model is a Promela model. Although called a program, it is more
an executable model. A Promela program consists of variables, channels and
processes. Processes are global objects, while variables and channels may be
declared either as global or local to a process.

To create a process, one has to de�ne a process template with the keyword
proctype, and then use the run statement to create the process from the tem-
plate. Promela also has the keyword inline, which behaves similar to macros
and the inline functions in C++ although it has more restrictions. Often, sev-
eral consecutive statements can be seen as one logical state change. It is possible
to group these statements into an atomic or d_step block, which abstracts the
statements into one state change.

Further, SPIN allows to express various properties in terms of linear temporal
logic (LTL) [3] and to check if the program satis�es these LTL properties. When
an error is found, SPIN reports it and shows the path of execution that led to
the error. the model can be in individually during the execution of the model,
and examines each state one by one.

In addition to model-checking, SPIN can also operate as a simulator, follow-
ing one possible execution path through the system and presenting the resulting
execution trace to the user.

3 Work�ow Patterns Translation

In this section it is introduced a translation into Promela of each work�ow
pattern belonging to the original set of twenty patterns, considering their re-
viewed de�nition, described in [1]. We focus on the translation of the generic
work�ow constructs. In this translation, processes, sub-processes and activi-
ties are mapped into Promela processes and control �ow paths into Promela
channels. The constructs are translated into inline de�nitions, which will be

3 WORKFLOW PATTERNS TRANSLATION 3

used in the description of control �ow dependencies between activities and sub-
processes in a work�ow process. Messages between processes will be represented,
without loss of generality, by integers in Promela.

In the translation of these patterns into the Promela language, we will
use the following notation: q will represent a channel and msg the message
sent or received in channel q; qs will denote an array of channels of sizeq
and msgs an array of messages of sizeq to be sent or received in each channel
in the array qs. The variable choice will be used to denote, when needed,
the index of the channel in the array qs in which will be sent the message.
Also, choices is an array of indexes of chosen channels and activeqs is an
array indicating the active channels. In some patterns, it is also necessary to
consider the construct myRun that receives a process identi�cation number id
as a parameter and executes a new instance of the given process. The id of
each process must be de�ned within the model. The construct myRun has also
an instance identi�cation i, which is used for activity instances in the multiple
instance patterns. When there is no need to identify the new activity instance
executed by the process myRun, the instance identi�cation parameter will be -1.

The two work�ow constructs that are widely used in the work�ow pat-
terns are the send and the receive. These constructs will be translated as
inline send(q,msg){ q!msg;} and inline recv(q,msg){ q?msg;}, respec-
tively. Note that variables are only declared in the scope of the proctypes that
use these inline de�nitions.

3.1 Basic Control Flow Patterns

With respect to the Basic Control Flow Patterns, we will present the transla-
tion of the patterns Sequence, Parallel Split, Syncronization, Exclusive
Choice and Simple Merge.

Sequence - An activity B in a work�ow process is enabled after the completion
of a preceding activity A in the same process. The process A in Promela should
use the send de�nition and the process B should use the recv de�nition.

chan q = [1] of {int};

proctype A(){

/* Do work. */

send(q,1); /* To activate process B. */

}

proctype B(){

int x;

recv(q,x); /* Waiting token. */

/* Do work. */

}

Note that the comments /* Do work. */ in the above processes should be
replaced by the details of each activity.

Parallel Split - This pattern is de�ned as being a mechanism that will allow
activities to be performed concurrently, rather than serially. A single path
through the process is split into two or more paths so that two or more activities

3 WORKFLOW PATTERNS TRANSLATION 4

will start at the same time. This pattern is translated by the following inline

de�nition, where each channel in the array qs is used to communicate with each
activity.

inline parallelSplit(qs, sizeq, msg){

int n;

n=0;

atomic {

do

:: n<sizeq -> qs[n]!msg[n]; n++;

:: n>=sizeq -> break;

od; }

}

The process in Promela which represents the activity that splits the process
must use the parallelSplit de�nition and the processes which represent the
activities to be initiated must use the recv de�nition.

Synchronization - The Synchronization pattern combines the paths that were
generated by the Parallel Split pattern. The �nal set of activities within
the �ows must be completed before the process can continue. This pattern is
translated to the following inline de�nition.

inline synchronization(qs, sizeq, msgs){

int n, count;

n=0; count=0;

/* MAXARRAYSIZE: The capacity of the arrays defined in the file

* which contains the translations of the workflow patterns */

int aux[MAXARRAYSIZE];

do

::n<sizeq -> aux[n]=0; n++;

::n==sizeq -> n=0; break;

od;

skip;

S:

if

::((aux[n]==0) && (len(q[n]) > 0) && count<sizeq)->

aux[n]=1; q[n]?msg[n]; count++

::count>=sizeq -> goto E

::else -> skip;

fi;

n++;

if

::n==sizeq -> n=0; timeout;

::n<sizeq -> skip;

fi;

goto S;

E: skip;

}

The process in Promela that receives the input branches must use the above
de�nition and the processes to be syncronized must use the send de�nition. It

3 WORKFLOW PATTERNS TRANSLATION 5

is denoted by aux an auxiliary array of size sizeq to distinguish between the
activities already completed from the others. After �nishing, each activity sends
a message through a channel in the array qs to report it (e.g. if the activity that
comunicates through channel qs[n] is �nished, it will send a message through
this channel reporting that). In this pattern translation, all the channels in
the array qs are transverse to see if there is something to receive from each
one of them. If there is, it will be received and marked it in the array aux

(e.g aux[n]=1). Thus, the process in Promela which use the syncronization
de�nition will only continue if it has received a message from each channel. The
use of the keyword timeout is to avoid process starvation, giving the opportunity
to other processes to execute.

ExclusiveChoice - This pattern is de�ned as being a split of the control �ow
into two or more exclusive alternative paths. The pattern is exclusive in the
sense that only one of the alternative paths may be chosen for the process to
continue. This pattern is translated by the following inline de�nition.

inline exclusiveChoice(qs,sizeq,choice,msg){

if :: (choice>=0 && choice<sizeq) -> qs[choice]!msg;

:: else -> skip;

fi;

}

The process representing the activity which makes the choice must use this
de�nition, and the alternative processes must use the recv de�nition.

Simple Merge - The Simple Merge pattern provides a means of merging two
or more control �ows of distinct activities without synchronizing them. This
pattern corresponds to an exclusive OR-join and is translated as follows.

inline simpleMerge(qs,sizeq,msg){

int n;

n=0;

skip;

S: if :: len(qs[n])>0 -> qs[n]?msg; goto E

:: len(qs[n])==0 -> n++; goto L

fi;

L: if :: n==sizeq -> n=0; timeout; goto S

/* timeout: to give chance to another process to execute. */

:: n<sizeq -> goto S

fi;

E: skip;

}

In this translation, each channel in the array qs will represent the communica-
tion channel between a speci�c Promela process and the process which merges
all the control �ow paths. The process in Promela which merges the control
�ows of distinct processes must use the above de�nition. The processes that
represent the activities whose control �ow will be joined must use the send

de�nition.

3 WORKFLOW PATTERNS TRANSLATION 6

3.2 Advanced Branching and Synchronization Patterns

The next �ve patterns describe more complex ways of splitting and joining the
�ow of a business process.

Multiple Choice - The Multiple Choice pattern di�ers from the Exclusive
Choice pattern in that the Multiple Choice pattern allows from one to all of the
alternative paths may be chosen at execution time. Technically, this pattern
may allow zero paths chosen, but this could be considered an invalid situation
where the process �ow stops unexpectedly. This pattern is translated to the
following inline de�nition.

inline multiChoice(qs,sizeq,msgs,choices,activeqs){

int n;

n=0;

skip;

S:if

::choices[n]==1 -> activeqs[n]!1;qs[n]!msgs[n]

::choices[n]==0 -> activeqs[n]!0

fi;

n=n+1;

if

::n<sizeq -> goto S

::n>=sizeq -> skip

fi;

}

The process that represents the activity which makes the choice must use
this de�nition, and the alternative processes must use the recv de�nition. Note
that activeqs, the array that indicates the active channels, is necessary for
the Structured Synchronized Merge pattern, which will merge some of
the alternative paths resulted from a multi-choice. For each of them, a mes-
sage will be sent through its channel in the array qs (e.g qs[n]) and thus, a
token is also sent through the corresponding channel in the array activesq (e.g
activesq[n]). These tokens will provide information about which channels
have been activated.

Structured Synchronizing Merge - This pattern provides a means of merg-
ing the paths resulting from a speci�cMulti-Choice construct earlier in a work-
�ow process into a single �ow. In this merging is implicit the synchronization
of all of the threads of execution resulting from the preceding Multi-Choice.

inline syncronizeMerge(qs,activeqs,sizeq,msgs){

int n, total, count1, count2;

n=0; total=0; count1=0; count2=0;

/*total: number of active channels.

*If we receive 1 by the channel activesqs[i],

then qs[i] is an active channel./

int aux[MAXARRAYSIZE];

/* MAXARRAYSIZE: The capacity of the arrays defined in the file

* which contains the translations of the workflow patterns */

do

::n<sizeq -> aux[n]=0; n++;

3 WORKFLOW PATTERNS TRANSLATION 7

::n==sizeq -> n=0; break;

od;

skip;

L: if

::((len(activeqs[n])>0) && count1<sizeq) ->

activeqs[n]?aux[n];count1++;

if

::aux[n]==1 -> total++

::aux[n]==0 ->skip

fi;

::(count1==sizeq) -> n=0; goto S

fi;

n++;

if

::(n==sizeq) -> n=0; timeout; goto L

::(n<sizeq) -> goto L

fi;

S: if

::((aux[n]==1) && (len(qs[n]) > 0) && count2<total)->

aux[n]=2; qs[n]?msgs[n]; count2++

:: (count2 >= total) -> goto E

fi;

n++;

if

::(n==sizeq)-> n=0

::(n<sizeq) -> skip

fi;

goto S;

E: skip;

}

With respect to the above de�nition, for each alterative path resulted from a
previous multi-choice, a message will be sent through its channel in the array qs

(e.g qs[n]) and thus, a token is also sent through the corresponding channel in
the array activesq (e.g activesq[n]). These tokens will provide information
about which channels have been activated. In addiction, it is also needed in this
translation an auxiliary array, aux, to distinguish between the active channels
in the array qs through which it was already received a message, from the active
channels in the array qs which is still necessary to wait for. The process that
represents the activity which makes the merging must use the above de�nition,
and the processes that represent the activities whose control �ow will be merged
must use the send de�nition.

Multi-Merge - The Multi-Merge pattern represents the convergence of multi-
ple paths in a process into a single path. In this pattern there is no synchroniza-
tion and each thread of control which is currently active in any of the preceding
paths will instanciate de subsequent activity. This pattern is translated to the
following inline de�nition.

inline multiMerge(qs,activeqs,sizeq,msgs,id){

int n, aux;

3 WORKFLOW PATTERNS TRANSLATION 8

n=0;

skip;

L: if

::(n<sizeq && (len(activeqs[n])>0) && (len(qs[n])>0))->

activeqs[n]?aux; qs[n]?msgs[n]; run myRun(id,n);

goto E;

::else -> n++;

fi;

if

::n<sizeq -> goto L

::n==sizeq -> n=0

fi;

S: if

::(n<sizeq && (len(activeqs[n])>0)) -> n=0; goto L

::else -> n++;

fi;

if

::n<sizeq -> goto S

::n==sizeq -> n=0

fi;

E: skip;

}

The id is the identi�cation number of the Promela process that represents
the activity which will be instacianted by each active thread of control of each
paths. The process in Promela, which represents the activity that merges the
control �ows of distinct processes, must use the multiMerge de�nition. The
processes that represent the activities whose control �ow will be merged must
use the send de�nition.

Structured Discriminator - This is another way of combining the paths that
were generated from a Parallel Split pattern. It di�ers from the Synchro-
nization pattern in that the thread of control of the �rst path generated from
a Parallel Split pattern is passed to the subsequent activity, while the other
generated paths do not result in the thread of control being passed on. The
discriminator construct resets after receiving the thread of control of all the
generated paths. This pattern is translated to the following inline de�nition.
It must also include a global variable and a global array, which we will denote
by x and array, respectively. The global variable is to distinguish between the
initial process that receives the �rst thread of control from the process created
by the previous one, which has the same id and is created only to receive the
remaining threads of control of the other paths. The initial process will con-
tinue, passing the thread of control. The global array is to control what are the
threads of control which remains to receive.

inline structuredDiscriminator(qs,sizeq,msgs,id,x,array){

int n, total;

n=0; total=1;

skip;

L:

if

3 WORKFLOW PATTERNS TRANSLATION 9

::(n<sizeq && len(qs[n])>0 && x==-1) -> x=n; array[n]=1;

qs[n]?msgs[n]; run myRun(id,n); goto E

::(n==sizeq && x==-1) -> n=0; timeout; goto L

::(n<sizeq && len(qs[n])==0 && x==-1) -> n++; goto L

::(x>=0) -> n=0; goto S

fi;

skip;

S:

if

::(n<sizeq && total<sizeq && len(qs[n])>0 && array[n]==0)->

qs[n]?msgs[n]; n++; total++; array[n]=1

::(total<sizeq && n==sizeq) -> n=0; timeout; goto S;

::total==sizeq -> goto E;

::else -> n++; goto S;

fi;

E: skip;

}

The process in Promela which represents the activity that combines the
control �ows of distinct processes must use the above de�nition. The processes
that represent the activities whose control �ow will be combined must use the
send de�nition.

3.3 Structural Patterns

In what concerns to the Structural Patterns, it will be presented the translation
of the patterns Arbitrary Cycles and Implicit Termination.

Arbitrary Cycles - This pattern can be implemented through a combination of
two other patterns, namely Exclusive Choice together with Simple Merge.
It can be seen an example of this situation in one of the case studies presented
in the next section.

Implicit termination - This pattern describes a situation where a given
process (or sub-process) instance does not have any remaining work to do and
so it should terminate. This pattern is implicit in all Promela processes which
does not have any remaining work to do.

3.4 Multiple Instante Patterns

Multiple Instances without Synchronization - This pattern provides a
means of creating multiple instancies of an activity (the number of individual
activities required is known before) within a given process instance. These
instances are independent of each other and is not necessary to synchronize
them. This pattern can be implemented through a combination of two other
patterns, namelly Multi-Choice together with Multi-Merge.

Multiple Instances with a priori Design-Time knowledge - This pattern
provides a means of creating multiple instances of an activity (the number of
individual activities required is known at design-time) within a given process
instance. These instances are independent of each other and is necessary to
synchronize them. This pattern is translated to the following inline de�nition.

3 WORKFLOW PATTERNS TRANSLATION 10

It will be needed two arrays of channels of sizeq, one for sending a message to
each one of the multiple instances of an activity that have been created, another
to receive a messagem from each of them. Thus, we will denote the arrays of
channels by qsS and qsR, respectively. Similarly, we will denote the arrays of
messages to be sent and to be received as msgS and msgR, respectively.

inline mIDTKnowledge(qS, qR, sizeq, msgS, msgR, id){

int n;

n=0;

atomic {

do

::n<sizeq -> run myRun(id, n); n++;

::n>=sizeq -> n=0; break;

od; }

parallelSplit(qS , sizeq , msgS);

synchronization(qR , sizeq , msgR);

}

After creating the speci�ed number of instances (sizeq) of a Promela

process that represent a speci�c activity, this pattern uses the Parallel Split
pattern to split one path into sizeq paths of execution, and then syncronize
them using the Synchonization pattern. The process in Promela which
creates the multiple instances must include the mIDTKnowledge de�nition.

Multiple Instances with a priori Run-Time knowledge - This pattern
provides a means of creating multiple instancies of an activity within a given
process instance. The number of individual activities required is known be-
fore the activity instances must be created, but is runtime dependent. These
instances are independent of each other and is necessary to synchronize them.

The only di�erence between this pattern and theMultiple Instances with

a priori Design-Time Knowledge pattern is that the number of instances
required is runtime dependent. However, the number of instances required is
also known before the activity instances must be created. Thus, since the pre-
vious translation is independent of the number of instances to be created (is a
parameter of the mIDTKnowledge de�nition), this pattern is translated to the
mIDTKnowledge de�nition.

Multiple Instances without a priori Run-Time knowledge - This pat-
tern provides a means of creating multiple instancies of an activity within a
given process instance. The number of individual activities required is runtime
dependent and it is not known until the �nal instance has completed. These
instances are independent of each other and is necessary to synchronize them.

This pattern requires that the work�ow model has globally de�ned the max-
imum number of activities that could be instanciated by a process and an array
of channels of this size to communicate between the process and the activities.
At the end the process must implement the Synchronization pattern in order
to syncronize the multiple instances of an activity that have been created.

3.5 State Based Patterns

Deferred Choice - This pattern represents a type of exclusive decision, sim-
ilar to Exclusive Choice pattern. However, the basis for determining the path

3 WORKFLOW PATTERNS TRANSLATION 11

depends on the interaction with the operating environment. The only di�erence
between this pattern and the Exclusive Choice pattern is that the basis for de-
termining the path depends on the interaction with the environment. Thus, this
pattern can be implemented as an Exclusive Choice pattern. So, the process
representing the activity which makes the choice must use the exclusiveChoice
de�nition, and the alternative processes must use the recv de�nition.

Interleaved Parallel Routing - In this pattern, the activities are sequencially
performed in any order that accords with a given parcial order of execution. It
follows the translation of this pattern.

inline parallelRouting(matrix,sizem){

int i, j, total;

i=0; j=0; total=0;

skip;

I: if

::(j<sizem && matrix.l[sizem].c[j]==1) -> total++; j++;

goto I;

::total==sizem -> j=0; goto E;

::(j<sizem && matrix.l[sizem].c[j]==0) -> total=0; goto L;

::else -> j=0; goto I;

fi;

L: if

::(j<sizem && i<sizem && matrix.l[j].c[i]==0) -> i++;

goto L;

::(j<sizem && i<sizem && matrix.l[j].c[i]==1) -> i=0; j++;

goto L;

::(j<sizem && i==sizem) -> i=0;

L1:

if

::len(qs[j])>0 -> qs[j]?msgs[j];

matrix.l[sizem].c[j]=1; goto S;

::len(qs[j])>0 -> timeout; goto L1;

fi;

::j==sizem -> j=0;

fi;

S: if

::i<sizem -> matrix.l[i].c[j]=0; i++; goto S;

::i==sizem -> i=0; j=0; goto I;

fi;

E: skip;

}

In the translation, matrix is a bi-dimensional array that express the par-
cial order of execution of the N activities to be executed. The matrix has N1+
lines and N columns. The last line indicates if the process has been executed
or not. Each entry of the matrix, matrix.l[i].c[j] in which 0 <= i,j <N,
can be interpreted in the following way: if the activity with identi�cation num-
ber i must be executed after the activity with identi�cator number j, then
matrix.l[i].c[j]=1; otherwise matrix.l[i].c[j]=0.

Milestone - The Milestone pattern represents the conditional execution of an

3 WORKFLOW PATTERNS TRANSLATION 12

activity (or sub-process) where the process instance is at a given state. The ac-
tivity is enabled only if the process instance is at a speci�c state (the milestone);
otherwise, the activity can not be enabled.

We denote by idqx the index of the channel in the array qs that activates
the activity whose execution is conditional to the state of the process instance.
Each channel in the array qs corresponds to alternative paths of control �ow
that can exist. The information if the process is at a milestone is given by the
parameter x: if x=1 it is; if x=0, it is not.

inline milestone(qs,sizeq,choice,msg,idxq,x){

if

:: x>=1 -> exclusiveChoice(qs,sizeq,choice,msg);

:: x==0 -> if

::(choice>=0 && choice<sizeq &&

(choice< idxq || choice>idxq)) ->

qs[choice]!msg;

::(choice==idxq) -> skip;

fi;

fi;

}

The process representing the activity whose thread of control could acti-
vate the activity whose execution is conditional to a milestone should use this
de�nition.

3.6 Cancellation Patterns

With respect to the Cancellation Patterns, we will present the translation of the
Cancel Activity and Cancel Case patterns. To translate these it is necessary
that each Promela process that may be canceled have a speci�c channel for this
purpose. Thus, if the process receives a message from that channel, it should
terminate. We will denote a single cancel channel as qCancel and an array of
canceling channels as qsCancel.

Cancel Activity - The Cancel Activity pattern provides a mean of withdraw an
enabled activity before starting to execute. However, if the activity has already
started, it is disabled and, where possible, the currently running instance is
halted. To translate this pattern it is necessary that the Promela process
which represents the activity to be canceled includes an escape sequence as
follows.

unless { len(qCancel)>0; skip; }

Cancel Case - This pattern describes the situation where is necessary to re-
move a complete process instance. This includes executing activities, those
which may execute at some time and all sub-processes. More generally, this
may be used to cancel individual activities, regions or the whole work�ow in-
stance. The Promela model needs to have a global array piIds representing
the relations between the processes, e.g., the parent of the process with identi-
�cation number x is the process with identi�cation number piIds[x]. In the
following inline de�nition, id is the identi�cation number of the process where
this inline de�nition is being included.

4 CASE STUDIES 13

inline cancelCase(qsCancel,sizeq,piIds,msgs,id){

int i;

i=0;

do :: i<sizeq && piIds[i]==id -> qsCancel[i]!msgs[i];i++;

:: i==sizeq ->break;

:: else -> i++;

od;

}

To implement this pattern, the process and all its activities and sub-processes
must include an escape sequence as follows.

unless{ len(qsCancel[id])>0;

cancelCase(qsCancel,sizeq,piIds,msgs,id) }

Each process that receives a message from its canceling channel qsCancel[id],
sends a canceling message, before terminate, to each one of its sub-processes or
activities in order to cancel them.

4 Case Studies

In order to ensure the reliability of business process, formal veri�cation meth-
ods are needed. This section shows how the above translation of work�ow
patterns can be useful for the formal veri�cation of business process models.
Two standard examples of business processes are the Loan Approval and the
Travel Agency. In this section it will be illustrated how to apply the translation
described above to both business process examples and, subsequently, properties
of these processes will be checked. It will be also illustrated how these business
processes can be modeled in Business Process Modeling Notation (BPMN) [4].

4.1 Loan Request

This case study consists of a simple loan approval where customers can submit
their requests for loans. A description of this process can also be found in [5].

The loan process starts with the activity Loan Request. This activity is
initiated with a request made by a costumer for a loan. The costumer must �ll
an application specifying personal information and the amount being requested.
The activity Validate Application will check the request made in the previ-
ous activity and will send the result to the next activity, Application Ok. In
the activity Application Ok it may occur one of the three possible situations:
the application is correct and is necessary to send that information to the next
activity, Approve; the application must be checked again and it is necessary
to send a message to the activity Validate Application in order to revalidate
the application; the application is not correct and is necessary to send that in-
formation to the next activity, Send Rejection. In the activity Approve the
received information is processed and sent to the activity Approved?. Finally,
in the activity Approved? there are three possible decisions: the loan request
can be approved and thus it sends a message to notice the Send Approval

activity; the loan request cannot be approved yet, but it is possible to approve

4 CASE STUDIES 14

Figure 1: A BPMN diagram for the Loan Request process.

it after revalidation (in this case, it is necessary to send a message to the activ-
ity Validate Application); the loan request must be rejected and then it is
necessary to send a message to the Send Rejection activity.

Figure 1 shows the business process modeled as a BPMN diagram. We
choose to present the model as a BPMN diagram because BPMN supports the
arbitrary cycles pattern, needed to specify the Loan Approval example.

The Promela Model

In what follows, we will specify as Promela processes the activities involved
in Loan Approval process. In this Promela model, we will need nine global
channels (denoted by the array of channels qs) and each one will allow to es-
tablish the communication between two given activities, e.g., qs[0] in the case
of Loan Request and Validate Application.

We denote by qs1, qs2 and qs3 the arrays of channels de�ned within the
processes. Each of these auxiliary arrays of channels include only some of the
channels in the array qs, as required by the patterns translation.

Loan Request - This activity initiates by receiving a request from a costumer
for a loan and is translated by the following Promela process.

proctype getLoan(){

/* The client request a loan. */

send(qs[0],1); /* To activate process validadeApplication. */

}

Validate Application - This activity check the request made by the costumer,
which can be evaluated more than once. It is translated to the Promela

process validateApplication. Note that the value of x could be changed in
this process. It will depend on the details of the business process, which we are
not considering. So, by default, x will be 1. However, x will be -1 when the loan
request is approved or when it is rejected.

proctype validateApplication(){

int x; chan qs1[4]= [1] of {int};

4 CASE STUDIES 15

qs1[0]=qs[8]; /* To receive from applicationOk. */

qs1[1]=qs[6]; /* To receive from approved. */

qs1[2]=qs[7]; /* To receive from sendRejection or from

* sendApproval. */

qs1[3]=qs[0];

recv(qs[0],x); /* Receive from getLoan. */

/* Check the application filled in the activity Loan Request. */

send(qs[1],x); /* Send to applicationOk. */

L: simpleMerge(qs1,4,x);

/* Revalidate the application filled. */

if

::x==-1 -> skip;

::x!=-1 -> send(qs[1],x); goto L

fi;}

Application Ok - As stated before, in this activity is chosen one of three possi-
bilities. Since the choice of one of the possibilities depends on the details of the
business process, we choose non determinalistically, without loss of generality
to the veri�cation, one of the three possibilities. Application Ok is translated
to the Promela process applicationOk.

proctype applicationOk(){

int y, x;

chan qs2[3]=[1] of {int};

qs2[0]=qs[8]; /* To send to validateApplication. */

qs2[1]=qs[2]; /* To send to sendRejection. */

qs2[2]=qs[3]; /* To send to approve. */

S: recv(qs[1],y); /* To receive from validateApplication. */

/* Note that the if construct chooses, non

* determinalistically, one of the choices. */

if

::x=0

::x=1

::x=2

fi;

exclusiveChoice(qs2,3,x,1);

goto S;

}

Send Rejection - The Send Rejection activity rejects the loan request and
terminates the process. It is translated to the following Promela process.

proctype sendRejection(){

int z;

recv(qs[2],z); /* Receive from applicationOk or approved. */

send(qs[7],-1); /* Send to validateApplication. */

/* Send rejection notice to the costumer. */

}

Approve - This activity receives information from the activity Application
Ok, processes the information and activate the next activity.

4 CASE STUDIES 16

proctype approve(){

int x;

T: recv(qs[3],x); /* Receive from ApplicationOk. */

/* Processes the information. */

send(qs[4],1); /* Send to approved. */

goto T;

}

Approved? - In this activity, it must be decided whether the loan request
can be approved or not. As stated before, there are three possible decisions.
Once again, we choose non determinalistically, without loss of generality to
veri�cation, one of the three possibilities. This activity is translated to the
Promela process approved.

proctype approved(){

int y, x;

chan qs3[3]=[1] of {int};

qs3[0]=qs[6]; /*to send to validateApplication*/

qs3[1]=qs[5]; /*to send to sendApproval*/

qs3[2]=qs[2]; /*to send to sendRejection*/

R: recv(qs[4],y); /*to receive from Approve*/

if

::x=0

::x=1

::x=2

fi;

exclusiveChoice(qs3,3,x,1);

goto R;

}

Send Approval - The loan request is approved and the activity Validate

Application is informed. The following process shows the translation of this
activity.

proctype sendApproval(){

int z;

recv(qs[5],z); /* To receive from approved. */

send(qs[7],-1); /* To send to validateApplication. */

/* Send approval notice to the costumer. */

}

Bellow is the corresponding Promela model description of the BPMN dia-
gram in �gure 1.

/* File with the translations of the workflow patterns. */

#include "utils.pr"

chan qs[10] = [1] of {int};

proctype getLoan(){...}

proctype validadeApplication(){...}

proctype applicationOK(){...}

proctype sendRejection(){ ...}

4 CASE STUDIES 17

Figure 2: Message Sequence diagram that shows a path of execution that led to
the error.

proctype approve(){...}

proctype approved(){...}

proctype sendApproval(){...}

init { atomic{ run getLoan(); run validadeApplication();

run applicationOk(); run sendRejection();

run approve(); run approved();

run sendApproval(); } }

Properties Veri�cation

It is possible to check if the Loan Approval business process model satis�es
certain properties using the SPIN model checker, it will considered two prop-
erties that this model should verify. In order to express them, a global int
variable s will be used and it will have the value 0 when the process begins,
the value 1 before process sendApproval �nishes and the value 2 before process
sendRejection �nishes.

One of the properties to check is that the process never approves and re-
jects the same loan request. By making the de�nitions, #define q (s==1)

and #define r (s==2), it is possible to formally express this property in LTL
as !(<>(q && r)). This property was automatically veri�ed with the SPIN
model checker.

Another property to check is that whenever this business process is invo-
cated, the process either approves or rejects the loan request. By making the
de�nitions #define p (s==0), #define q (s==1) and #define r (s==2), it
is possible to formally express this property in LTL as [] (p -> <> (q || r)).
It is interesting to note that this property is not veri�ed by the SPIN model

4 CASE STUDIES 18

Figure 3: A BPMN diagram for the Travel Agency Process.

checker. SPIN shows the error and the path of execution that led to the error,
i.e., the counterexample, as it can be seen in �gure 2. In fact, the problem is that
there are paths of execution that never lead to a state where the loan request is
rejected or approved. This is because that in the speci�cation there are no limit
in the number of times that the request could be revalidated. This property is
then veri�ed by limiting the number of times that the same loan request could
be in the activity validate application and in the activity Approved.

4.2 Travel Agency

This case study consists of a simple travel agency where customers can book a
trip. The process of booking trips involves booking a �ight and a hotel. If both
bookings succeeds, the payment follows. Otherwise, the booking of the trip is
canceled. A description of this process can also be found in [4].

Figure 3 shows the business process modeled as a BPMN diagram. The
process of booking is represented by the transaction Book and executes in
parallel two activities: the activity Book Flight and Book Hotel. If both
activities succeed, the activity Charge Buyer follows, otherwise, the process
Book is canceled and follows the activity Send Failure Notice.

The Promela Model

In what follows, the activities involved in Travel Agency example will be speci-
�ed as Promela processes. The Promela model will have two global channels.
The array of channels denoted by qs is used for communication between the
process Book and its sub-processes Book Flight and Book Hotel. However,
in the situation of canceling, the communication among these processes is made
by their respective canceling channels, denoted by qsCancel. The other two
channels, q1 and q2, are used by process Book to communicate, when needed,
with processes Failure Notice andCharge Buyer. We denote by qs1 and qs2

the arrays of channels de�ned within the processes. Each one of these auxiliary
array of channels include one channel of qs and one channel of qsCancel.

4 CASE STUDIES 19

Book - This Promela process translates the process of booking.

proctype Book(){

{ int ids=1; /* The id of this process is 1. */

piIds[ids]=0;

int msgs[4];

/* Receive personnal information of the costumer. */

ids++;

piIds[ids]=1;

run myRun(2,-1); /* Run BookFlight. */

ids++;

piIds[ids]=1;

run myRun(3,-1); /* Run BookHotel. */

parallelSplit(qs,2,1);

synchronization(qs,2,msgs);

send(q1,1);

} unless { len(qsCancel[1])>0;

cancelCase(qsCancel,4,piIds,msgs,1); send(q2,1); }

}

Book Flight - This activity represents the booking of a �ight. In this activity is
decided if it is possible to book a �ight suitable for the interests of the costumer.
If it is not possible, the activity Book Flight is canceled and this information
is sent to the process Book in order to the whole process be canceled. Since the
choice of one of the possibilities depends on the details of the business process,
we choose non determinalistically, without loss of generality to the veri�cation,
one of the three possibilities.

proctype BookFlight(){ /* 2 is the id of this process. */

{ int x, msgs[4];

chan qs1[2];

qs1[0]=qs[0]; qs1[1]=qsCancel[1];

recv(qs[0],x); /* Waiting token. */

/* Decide if it is possible or not to book a flight. */

if

::x=0 /* Not to cancel. */

::x=1 /* To cancel. */

fi;

exclusiveChoice(qs1,2,x,1);

} unless { len(qsCancel[2])>0;

cancelCase(qsCancel,4,piIds,msgs,2); }

}

Book Hotel - This activity represents the booking of a hotel. In this activity is
decided if it is possible to book a hotel suitable for the interests of the costumer.
If it is not possible, the activity Book Hotel is canceled and this information is
sent to the process Book in order to the whole process be canceled. Once again,
we choose non determinalistically, without loss of generality to veri�cation, one
of the two possibilities.

proctype BookHotel(){ /* 3 is the id of this process. */

4 CASE STUDIES 20

{ int x, msgs[4];

chan qs2[2];

qs2[0]=qs[1]; qs2[1]=qsCancel[1];

recv(qs[1],x); /* Waiting token. */

/* Decide if it is possible or not to book a hotel. */

if

::x=0 /* Not to cancel. */

::x=1 /* To Cancel. */

fi;

exclusiveChoice(qs2,2,x,1);

} unless { len(qsCancel[3])>0;

cancelCase(qsCancel,4,piIds,msgs,3); }

}

Charge Buyer - This activity is activated by the process Book in order to
charge a payment to the costumer that has requested the booking.

proctype ChargeBuyer(){

int x; recv(q1,x);

/* Charge the costumer. */}

Send Failure Notice - This activity is activated by the process Book and
must inform the costumer that the booking process has failed.

proctype sendFailure(){

int x; recv(q2,x);

/* Send failure notice to the costumer. */}

Bellow is the corresponding Promela model of the BPMN diagram in �gure
3.

/* File with the translations of the workflow patterns. */

#include "utils.pr"

chan qs[2] = [1] of {int};

chan q1= [1] of {int}; chan q2= [1] of {int};

chan qsCancel[4]= [1] of {int};

int piIds[4];

proctype myRun(int id, int n){

if

::(id==1) -> run Book()

::(id==2) -> run BookFlight()

::(id==3) -> run BookHotel()

fi;}

proctype Book(){...}

proctype ChargeBuyer(){...}

proctype SendFailure(){...}

proctype BookFlight(){...}

proctype BookHotel(){...}

init{ atomic{ run Book(); run ChargeBuyer();

piIds[0]=-1; run SendFailure();} }

5 RELATED WORK 21

Properties Veri�cation

It is possible to check if the Travel Agency business process model satis�es
certain properties using the SPIN model checker. It will be checked one property
that this model should verify. We will express it with the help of one global
int variable s, which has the value 0 when the process begins, the value 1

before process ChargeBuyer �nishes and the value 2 before process SendFailure
�nishes.

The property is that whenever we invocate this business process, the process
either charge the buyer or send him a failure notice to tell him that the book-
ing was not possible. By making the following de�nitions #define p (s==0),
#define q (s==1) and #define r (s==2), it is possible to formally express
this property in LTL as [] (p -> <> (q || r)). This property was automat-
ically veri�ed with the SPIN model checker.

5 Related Work

Currently research has been done into the application of SPIN to work�ow
speci�cation and veri�cation. In [6] is proposed a method to check correctness
properties of work�ows implemented in BPEL. Data�ow networks are used to
de�ne the formal semantics of the work�ow. The BPEL model is mapped into
data�ow network and the data�ow network is mapped into a Promela model.
A method of verifying Web Services Flow Language (WSFL) [7] description by
using SPIN is introduced in [8]. In particular, it presents an encoding method
that translates WSFL primitives to Promela. These approaches are both fo-
cused on the translation of a work�ow language to Promela, while this work is
focused on the translation of work�ow patterns to Promela, which are language
and technology independent, in order to formally verify work�ow systems.

An approach of giving a representation of the work�ow patterns has been
developed with π-calculus [9], although it is not oriented towards automated
veri�cation. A bene�t of using SPIN is in terms of visualizing counterexamples
for negative results. Also, as the veri�cation in π-calculus is done by check-
ing bisimulation equivalence, some times results are not obtained in reasonable
amount of time, even for the proofs of very simple correctness requirements [10].
There is also being used a subset of π-calculus to model work�ow patterns, Cal-
culus of Communicating Systems (CCS) [11], but does not conform to standard
CCS, and does not have a veri�cation tool. [12].

In [13] is given a representation of these patterns in Communicating Sequen-
tial Processes (CSP) [14]. Comparing CSP and Promela, Promela is richer
and strictly more expressive (e.g. asynchronous communication is supported
and channels are �rst class objects in Promela but not in CSP). Furthermore,
Promela's C-like syntax makes it more accessible to non-experts [15].

Yet Another Work�ow Language (YAWL) [16] was also used to represent
work�ow patterns. However, we believe that since SPIN is a model checker and
Promela has a similar syntax to C it has an advantage over YAWL.

6 CONCLUSIONS 22

6 Conclusions

In this paper, it is proposed the use of software model-checking technology
for the veri�cation of the business processes, namely the SPIN model checker.
Since the business processes can be decomposed into patterns, it is proposed a
translation of a well known collection of work�ow patterns into Promela. This
translation is applied to two case studies, namely the Loan Request and the
Travel Agency examples. It is also illustrated the veri�cation of some properties
and it has been seen that, in despite of the simplicity of the Loan Request
example, it has an error which was discovered by the SPIN model checker.
Thus, this simple example demonstrate how Promela models can be useful in
business process speci�cation and veri�cation.

Future work will concern an automatic translator of BPMN models (or mod-
els described in other process modeling languages) to Promela models. It is
also interesting to further express required properties of the work�ow patterns
in linear temporal logic in order to verify them with SPIN model checker.

References

[1] Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Work�ow
Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22
(2006)

[2] Holzmann, G.: The SPIN MODEL CHECKER. Primer and Reference
Manual. Addison-Wesley. Pearson Education (2003)

[3] Manna, Z., Pnueli, A.: The temporal Logic of Reactive and Concurrent
Systems: Speci�cation. Springer (1991)

[4] OMG: Business Process Modeling Notation. Speci�cation (2006)

[5] Havey, M.: Essential Business Process Modeling. O'Reilly Media, Inc.
(2005)

[6] Kovács, M., Gönczy, L.: Simulation and Formal Analysis of Work�ow
Models. In: Proc. of the Fifth International Workshop on Graph Transfor-
mation and Visual Modeling Techniques. Electronic Notes in Theoretical
Computer Science, Vienna, Austria, Elsevier (2006) 215�224

[7] Leymann, F.: Web Services Flow Language. IBM (2001)

[8] Nakajima, S.: Veri�cation of Web Service Flows with Model-Checking
Techniques. IEEE Computer Society 00 (2002) 0378

[9] Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing work�ow
patterns. In: Business Process Management. (2005) 153�168

[10] Song, H., Compton, K.J.: Verifying pi-calculus processes by Promela trans-
lation. Technical report, Univ. of Michigan (2003)

[11] Milner, R.: Communication and concurrency. Prentice Hall International
(UK) Ltd. (1995)

REFERENCES 23

[12] Stefansen, C.: SMAWL: A SMAll Work�ow Language Based on CCS.
CAiSE Forum (2005)

[13] Wong, P.Y., Gibbons, J.: A process-algebraic approach to work�ow speci�-
cation and re�nement. In: Proceedings of the 6th International Symposium
on Software Composition (SC2007). (2007)

[14] Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall (1997)

[15] Currie, A.J.: A Comparison of Three Model Checkers Applied to a Dis-
tributed Database Problem. In: IWFM. (2000)

[16] van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another work�ow
language. Information Systems 30(4) (2005) 245�275

